
0-0



0-1



Copyright c© 2008, 2009, 2010 Oracle Corporation (“Oracle”). All rights are

reserved by Oracle except as expressly stated as follows. Permission to make digital

or hard copies of all or part of this work for personal or classroom use is granted,

provided that copies are not made or distributed for profit or commercial advantage

and that copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers, or to redistribute to lists, requires prior

specific written permission of Oracle.

1



With Multicore, a Profound Shift

• Parallelism is here, now, and in our faces

> Academics have been studying it for 50+ years

> Serious commercial offerings for 25+ years

> But now it’s in desktops and laptops

• Decades of specialized expertise for science codes and

databases and networking

• But soon NOW general practitioners must go parallel

• An opportunity to make parallelism easier for everyone

2



Moore’s Law Reinterpreted

• Number of cores per chip doubles every 2 years, while clock

speed remains fixed or decreases

• Need to deal with systems with millions of concurrent threads

> Future generation will have billions of threads!

• Numbers of threads of execution doubles every 2 years

• Must rethink the design of our software

Quoted from Jack Dongarra, “An Overview of High Performance Computing and Challenges for the Future,” HPDC 2009.

3



JAOO Conference, Autumn 2008

• Anders Hejlsberg: C#

• Guy Steele: Fortress

• Bill Venners: Scala

• Erik Meijer: functional programming

4



Data Parallelism

• Standard strategies/idioms with parallel implementations:

> Broadcast, reduce, permute, parallel prefix

> And don’t forget “map”!

> And more complex operations: sort, join

• When it works, it’s great. But SIMD is too confining.

• Often you want “data parallelism of the program counter”

> In functional programming terms: want to map apply

• With nonlocal side effects, you get race conditions

• The data parallelism mindset is great for coordinated

communication and making appropriate composable

abstractions

5



Main Points of This Talk

• The best way to write parallel applications is not to have to

think about parallelism.

> Need for separation of concerns

• The issue is not so much parallelism as independence.

• Accumulators are BAD. Divide-and-conquer is GOOD.

> An old message, but now we need to take it seriously.

• Certain algebraic properties are very important.

> Programmers need help to ensure these properties.

• For debugging, reproduceability is extremely important.

> Worth sacrificing performance for (another old message)

6



What Makes Code Good?
• Good sequential code minimizes total number of operations.

> Clever tricks to reuse previously computed results.

> Good parallel code often performs redundant operations to

reduce communication.

• Good sequential algorithms minimize space usage.

> Clever tricks to reuse storage.

> Good parallel code often requires extra space to permit

temporal decoupling.

• Sequential idioms stress linear problem decomposition.

> Process one thing at a time and accumulate results.

> Good parallel code usually requires multiway problem

decomposition and multiway aggregation of results.

7



Let’s Add a Bunch of Numbers

SUM = 0 // Oops!

DO I = 1, 1000000

SUM = SUM + X(I)

END DO

Can it be parallelized?

8



Let’s Add a Bunch of Numbers

SUM = 0 // Oops!

DO I = 1, 1000000

SUM = SUM + X(I)

END DO

Can it be parallelized?

This is already bad!

Clever compilers have to undo this.

9



What Does a Mathematician Say?

1000000∑
i=1

xi or maybe just

∑
x

Compare Fortran 90 SUM(X).

What, not how.

No commitment yet as to strategy. This is good.

10



Sequential Computation Tree

SUM = 0

DO I = 1, 1000000

SUM = SUM + X(I)

END DO

11



Atomic Update Computation Tree (a)

SUM = 0

PARALLEL DO I = 1, 1000000

SUM = SUM + X(I)

END DO

12



Atomic Update Computation Tree (b)

SUM = 0

PARALLEL DO I = 1, 1000000

ATOMIC SUM = SUM + X(I)

END DO

13



Parallel Computation Tree

What sort of code

should we write

to get a computation

tree of this shape?

What sort of code

would we like

to write?

14



Communication and Synchronization

• These are important low-level concepts

> Great for library programmers building the plumbing

> We should discourage their use by application programmers

• Why transactional memory is better than locks:

> Avoids deadlock? Well, that’s nice . . .

> Eager (speculative) execution is more efficient? Maybe . . .

> The big win: composable abstractions

• Side effects are typically used to support accumulation,

and accumulation is often the enemy of independence and

reproduceability

15



Accumulation . . .

• Start with an empty solution

• Use each input to incrementally update the solution

> The incremental update operator is typically asymmetric

• Great if you have committed to using one processor

• Linear time, but really saves space

• Avoids constructing data structures (just use variables)

16



. . . vs. Divide-and-Conquer

• From each input construct a singleton solution

• Merge solutions (typically pairwise)

• Takes more space, but can be log time

• Intermediate solutions may need to be heap-allocated

• Merge is usually more complicated than incremental update

• But merge is typically associative!

> Often it is also commutative, but not always

• Identifying this associative combining operator usually lends

deeper insight into the problem

17



Splitting a String into Words (1)

• Given: a string

• Result: List of strings, the words separated by spaces

> Words must be nonempty

> Words may be separated by more than one space

> String may or may not begin (or end) with spaces

18



Splitting a String into Words (2)
• Tests:

println words(“This is a sample”)
println words(“ Here is another sample ”)
println words(“JustOneWord”)
println words(“ ”)
println words(“”)
• Expected output:

〈 This, is, a, sample 〉
〈 Here, is, another, sample 〉
〈 JustOneWord 〉
〈 〉
〈 〉

19



Splitting a String into Words (3)
words(s: String) = do

result : ListJStringK := 〈 〉
word : String := “”
for k ← seq

`
0 # length(s)

´
do

char = substring(s, k, k + 1)

if (char = “ ”) then
if (word 6= “”) then result := result ‖ 〈word 〉 end
word := “”

else

word := word ‖ char

end

end

if (word 6= “”) then result := result ‖ 〈word 〉 end
result

end

20



Splitting a String into Words (4a)

21



Splitting a String into Words (4b)

22



Splitting a String into Words (4c)

23



Splitting a String into Words (4d)

24



Splitting a String into Words (4e)

25



Splitting a String into Words (4f)

26



Splitting a String into Words (4g)

27



Splitting a String into Words (4h)

28



Splitting a String into Words (5)

maybeWord(s: String): ListJStringK =

if s = “” then 〈 〉 else 〈 s 〉 end

trait WordState

extends
{

AssociativeJWordState,⊕K}

comprises {Chunk, Segment }
opr ⊕(self, other : WordState): WordState

end

29



Splitting a String into Words (6)

object Chunk(s: String) extends WordState

opr ⊕(self, other : Chunk): WordState =

Chunk(s ‖ other .s)

opr ⊕(self, other : Segment): WordState =

Segment(s ‖ other .l, other .A, other .r)

end

30



Splitting a String into Words (7)

object Segment
(
l: String, A: ListJStringK, r: String

)

extends WordState

opr ⊕(self, other : Chunk): WordState =

Segment(l, A, r ‖ other .s)

opr ⊕(self, other : Segment): WordState =

Segment
(
l, A ‖ maybeWord(r ‖ other .l) ‖ other .A, other .r

)

end

31



Splitting a String into Words (8)

processChar(c: String): WordState =

if (c = “ ”) then Segment
(
“”, 〈 〉, “”

)
else Chunk(c) end

words(s: String) = do

g =
⊕

k←0#length(s)

processChar
(
substring(s, k, k + 1)

)

typecase g of

Chunk⇒ maybeWord(g.s)

Segment⇒ maybeWord(g.l) ‖ g.A ‖ maybeWord(g.r)

end

end

32



Splitting a String into Words (9)

(* The mechanics of BIG OPLUS *)

opr BIG ⊕JT K(g:
(
ReductionJWordStateK, T →WordState

)

→WordState
)
: WordState =

g
(
GlomReduction, identityJWordStateK)

object GlomReduction extends ReductionJWordStateK
getter toString() = “GlomReduction”
empty(): WordState = Chunk(“”)
join(a: WordState, b: WordState): WordState = a⊕ b

end

33



Algebraic Properties Are Important!

• Associative

• Commutative

• Idempotent

• Identity

• Zero

34



Algebraic Properties Are Important!

• Associative: grouping doesn’t matter!

• Commutative: order doesn’t matter!

• Idempotent: duplicates don’t matter!

• Identity: this value doesn’t matter!

• Zero: other values don’t matter!

Invariants give the implementation wiggle room, that is, the

freedom to exploit alternate representations and implmentations.

In particular, associativity gives implementations the necessary

wiggle room to use parallelism—or not—as resources dictate.

35



The Big Idea

• Loops and summations and list/set comprehensions are alike!

for i← 1 : 1000000 do xi := x2
i end∑

i←1:1000000

x2
i

〈x2
i | i← 1 : 1000000 〉, { x2

i | i← 1 : 1000000 }
> Generate an abstract collection

> The body computes a function of each item (map)

> Combine the results (or just synchronize) (reduce)

• Whether to be sequential or parallel is a separable question

> That’s why they are especially good abstractions!

> Make the decision on the fly, to use available resources

36



Another Big Idea

• Formulate a sequential loop as successive applications of state

transformation functions fi

• Find an efficient way to compute and represent compositions

of such functions (this step requires ingenuity)

• Instead of computing

s := s0; for i← seq(1 : 1000000) do s := fi(s) end ,

compute s :=
(◦[i← 1 : 1000000] fi

)
s0

• Because function composition is associative (though not

commutative), the latter has a parallel strategy

• In the “words in a string” problem, each character can be

regarded as defining a state transformation function

37



Splitting a String into Words (3) (again)

words(s: String) = do

result : ListJStringK := 〈 〉
word : String := “”
for k ← seq

`
0 # length(s)

´
do

char = substring(s, k, k + 1)

if (char = “ ”) then
if (word 6= “”) then result := result ‖ 〈word 〉 end
word := “”

else

word := word ‖ char

end

end

if (word 6= “”) then result := result ‖ 〈word 〉 end
result

end

38



Automatic Divide-and-Conquer Code

If you can construct two sequential versions of a function that
is a homomorphism on lists, one that operates left-to-right and
one right-to-left, then there is a technique for constructing a
divide-and-conquer version automatically.

Morita, K., Morihata, A., Matsuzaki, K., Hu, Z., and Takeichi, M.

“Automatic inversion generates divide-and-conquer parallel programs.”

Proc. 2007 ACM SIGPLAN PLDI, 146-155.

Just derive a weak right inverse function and then apply the Third

Homomorphism Theorem. See—it’s easy!

There is an analogous result for tree homomorphisms. Morihata, A., Matsuzaki, K., Hu, Z., and Takeichi, M. “The third homomorphism theorem

on trees: Downward and upward lead to divide-and-conquer.” Proc. 2009 ACM SIGPLAN-SIGACT POPL, 177–185.

Full disclosure: the authors of these papers were members of a research group at the University of Tokyo that has had a collaborative research

agreement with the Programming Language Research group at Sun Microsystems Laboratories.

39



MapReduce Is a Big Deal!

• Associative combining operators are a VERY BIG DEAL!

> Google MapReduce requires that combining operators also

be commutative.

> There are workarounds (attach explicit tags, then sort).

> But the system really should maintain order for you.

> Parallel prefix is an important related concept

• Inventing new combining operators is a very, very big deal.

> Don’t settle for just SUM, PRODUCT, AND, OR, XOR, MIN, MAX

> User-defined monoids! Creative catamorphisms!

> We need programming languages that encourage this.

> We need assistance in proving them associative.

40



We Need a New Mindset
• DO loops are so 1950s! (Literally: Fortran is now 50 years old.)

• So are linear linked lists! (Literally: Lisp is now 50 years old.)

• JavaTM-style iterators are so last millennium!

• Even arrays are suspect! (Constant-time indexing is an illusion.)

• As soon as you say “first, SUM = 0” you are hosed.

• Accumulators are BAD. They encourage sequential

dependence and tempt you to use nonassociative updates.

• If you say, “process subproblems in order,” you lose.

• The great tricks of the sequential past WON’T WORK.

• The programming idioms that have become second nature to

us as everyday tools for the last 50 years WON’T WORK.

41



The Parallel Future
• We need new strategies for problem decomposition.

> Data structure design/object relationships

> Algorithmic organization

> Don’t split a problem into “the first” and “the rest.”

> Do split a problem into roughly equal pieces.

Then figure out how to combine general subsolutions.

> Often this makes combining the results a bit harder.

> But usually it results in deeper understanding.

• We need programming languages and runtime

implementations that support parallel strategies

and hybrid sequential/parallel strategies.

• We must learn to manage new space-time tradeoffs.

42



Floating-Point Summation

• Floating-point addition is not associative.

(This is the perennial fly in the ointment.)

• How should we handle large floating-point sums?

• Three principles: accuracy, independence, reproduceability

• Ideally, produce a result with just one rounding error overall.

> Hardware and software solutions have been proposed.

• If we are not willing to pay that cost, then we should pay the

cost at least for reproduceability, at least when debugging!

• Define a standard binary tree: add nonoverlapping (starting

from left) adjacent pairs, repeat until only one left.

• Much better standard for the future than “sequential order”

43



Parallelism Is Like Memory
Management

• Resource management problems throughout history:

> Registers: register allocators

> Main memory: overlays, virtual memory, GC heaps

> Cache: cache-oblivious algorithms, self-tuning algorithms

• The key is to maintain an invariant that gives the

implementation some wiggle room!

• A good programming language or environment aids or

enforces those invariants.

• We need to do for processor allocation what garbage

collection has done for memory allocation.

44



Language Design: Medium Term

• Programming languages and related tools that allows

experimentation with the necessary abstractions.

• In particular, we need better abstractions of machine

organization that will allow efficient software to port across

parallel architectures.

• We have made much progress since HPF.

45



Language Design: Long Term

• Programming languages and related tools that just run

programs efficiently when written in an appropriate and

supported style.

• I think that style must be the divide-and-conquer style.

• We need tools to help programmers maintain the necessary

invariants, including associativity.

46



Conclusion
• A program organized according to linear problem

decomposition principles can be really hard to parallelize.

• A program organized according to independence and divide-

and-conquer principles is easily run either in parallel or

sequentially, according to available resources.

• The new strategy has costs and overheads. They will be

reduced over time but will not disappear.

• In a world of parallel computers of wildly varying sizes,

this is our only hope for program portability in the future.

• Better language design can encourage “independent thinking”

that allows parallel computers to run programs effectively.

47



47-1


