
What’s in the semantic gap?

Robert J. Harrison
Oak Ridge National Laboratory

and
The University of Tennessee, Knoxville

harrisonrj@ornl.gov

2

Possible (probable?) HPC futures

High-end simulation is the most
credible vehicle for accelerating the
application of knowledge from basic
science to the design of new energy
technologies

Complexity constrains all of our
ambitions (cost & feasibility).

We hear about the successes, but
what about the failures?

What about the disciplines that are
not computing?

3

O(1) programmers
O(10,000) nodes
O(100,000) processors
O(100,000,000) threads
and growing

• Growing intrinsic complexity of problem

• Complexity kills … sequential or parallel
– Expressing concurrency at extreme scale
– Managing the memory hierarchy

• Semantic gap (Colella)
– Our equations are O(100) lines but
– The program is O(100K) & growing
– Why?

4

Wish list
● Eliminate gulf between theoretical innovation in

small groups and realization on high-end computers
● Eliminate the semantic gap so that efficient parallel

code is no harder than doing the math
● Enable performance-portable “code” that can be

automatically migrated to future architectures
● Reduce cost at all points in the life cycle

● Much of this is pipe dream – but what can we
aspire to?

5

Guy Steele’s example

● Natural language problem description

I will give you some text – please remove
white space and give me the list of words

● The wetware of an undistracted first grader is
capable of running this two-line “program”
with no more guidance

6

Missing ingredients
● Natural language problem description

● Implicit & fuzzy definitions of verbs, nouns, ...
● Incomplete without more context

● E.g., what if an American first grader was given

وقال خليل إبراهيم في برنامج ضيف المنتصف على قناة الجزيرة
اليوم إن "ما يحدث في الدوحة هو تزوير لن الطراف الرئيسية
 ."غير موجودة والحرب دائرة على الرض وتمتد للمدن

● No ordering specified – parallelism
● Does not include an algorithm

Khalil Ibrahim in the middle Guest on Al-Jazeera today, "what is happening in Doha is a fraud
because the main parties do not exist and the war department on the ground and extends to cities”

7

Conventional solution
● Problem statement + brain

→ algorithm
● Algorithm + language + brain

→ program
● Computer + program + input

→ result
● The brain is

● Expensive
● Finite
● Not growing exponentially

Image from http://www.ucdmc.ucdavis.edu/welcome/features/20071017_Medicine_whitematter/Photos/head_and_brain.jpg

This is clearly Guy’s brain
 - Flashes of inspiration
 - Blue aura of authority

8

Impact of sustained exponential growth

● We are only beginning to
realize the transforming power
of computing as an enabler of
innovation and discovery.

● A characteristic of exponential
growth is that we will make as
much progress in the next
doubling cycle as we’ve made
since the birth of the field:

● 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, ...

9

Scientific vs. WWW software
● Why are we not experiencing the same nearly

exponential growth in functionality?
● Level of investment or number of developers?
● Lack of software interoperability and standards?
● Competition not cooperation between groups?
● Shifting scientific objectives?
● Our problems are intrinsically harder?
● Failure to embrace/develop higher levels for

composing applications?
● Differing impact of hardware complexity?

10

What is a processor in 2015?
● Probably not an x86
● E.g., Nvidia C2060 480 cores

● ~1TF peak (single), ~0.5TF (double)
● LANL RoadRunner – hybrid

● 1 PF of IBM Cell + Opteron
● Cyclops

● 160 simple thread units per chip
● no cache - S/W managed on-chip memory

●FLOPs are cheap; bandwidth is expensive

1 core

11

There is no escape

● Trickle-down computing
● 2010’s national supercomputer is
● 2013’s campus resource
● 2016’s group cluster
● 2019’s personal server

● Why petascale computing now?
● Because you have large problems now
● Because you want to prepare for the future

12

Back to the Gap – what did
Guy’s brain do?

● Complete the specification with
mathematical rigor

● Including aspects of representation
● Provide an algorithm
● Whence came the algorithm?

● Derived from the specification?
● Instantly and unconsciously

pattern matched against decades
of prior experience?

● Guy ... what’s your answer?
● Express the algorithm as Fortress code

13

Fortunately for scientific HPC

● Mathematical rigor is the norm
● Which partially explains why some disciplines

are late to the table
● Unfortunately, also the norm are neglect or

ignorance of
● difference between algebraic and floating-

point numbers,
● accuracy, stability, and other properties of

common algorithms
● parallel algorithms and programming

14

Frameworks

● NWChem
● MADNESS
● ChemES – chemistry end-station
● Frameworks

● Increase productivity; hide complexity
● Interface disciplines
● Capture knowledge
● Open HPC to wider community
● Expensive, communal projects

15

Molecular Science Software ProjectMolecular Science Software Project

Gary Black,
Brett Didier,
Todd Elsenthagen,
Sue Havre,
Carina Lansing,
Bruce Palmer,
Karen Schuchardt,
Lisong Sun
Erich Vorpagel

PNNL
Yuri Alexeev,
Eric Bylaska,
Bert deJong,
Mahin Hackler,
Karol Kowalski,
Lisa Pollack,
Tjerk Straatsma,
Marat Valiev,
Theresa Windus

ORNL
Edo Apra,
Vincent Meunier
Robert Harrison

Manoj Krishnan, Jarek Nieplocha,
Bruce Palmer, Vinod Tipparaju

http://www.emsl.pnl.gov/docs/nwchem/nwchem.html

http://www.emsl.pnl.gov/docs/nwchem/nwchem.html
http://www.emsl.pnl.gov/docs/nwchem/nwchem.html

16

Global Arrays (technologies)
• Shared-memory-like model

– Fast local access
– NUMA aware and easy to use
– MIMD and data-parallel modes
– Inter-operates with MPI, …

• BLAS and linear algebra interface
• Ported to major parallel machines

– IBM, Cray, SGI, clusters,...

• Originated in an HPCC project
• Used by most major chemistry

codes, financial futures forecasting,
astrophysics, computer graphics

• Supported by DOE

• A legacy of Jarek Nieplocha, PNNL

Single, shared data structure

Physically distributed data

http://www.emsl.pnl.gov/docs/global/

17

local memory

Non-uniform memory access model of
computation

Shared Object

copy to local m
em

ory

Shared Object

 c
op

y
to

 s
ha

re
d

ob
je

ct

local memorylocal memory

compute/update

1-sided
communication

1-sided
communication

18

D µν
While ((task = SharedCounter())< max)

call ga_get()

(do work)

call ga_acc()
End while
Barrier()

Fρσ

Dynamic load balancing

More scalable structures easily composed but often not necessary.

19

Dead code
● Requires human labor

● to migrate to future
architectures, or

● to exploit additional
concurrency, or

● ...
● By these criteria most

extant code is dead
● Sanity check

● How much effort is
required to port to hybrid cpu+GPGPU?

7 December 1969

20

Next generation ORNL NLCF

• ORNL has proposed a system to meet DOE's
requirement for 20-40 PF of compute capability
split between the Oak Ridge and Argonne LCF
centers

• ORNL's proposed system will be based on
accelerator technology
– includes software development environment

• We plan to deploy the system in late 2011 with
users getting access in 2012

• Watch this space for more details soon

 http://www.nccs.gov/

http://www.nccs.gov/

21

The language of
many-body physics

22

CCSD Doubles Equation
hbar[a,b,i,j] == sum[f[b,c]*t[i,j,a,c],{c}] -sum[f[k,c]*t[k,b]*t[i,j,a,c],{k,c}] +sum[f[a,c]*t[i,j,c,b],{c}] -sum[f[k,c]*t[k,a]*t[i,j,c,b],{k,c}]

-sum[f[k,j]*t[i,k,a,b],{k}] -sum[f[k,c]*t[j,c]*t[i,k,a,b],{k,c}] -sum[f[k,i]*t[j,k,b,a],{k}] -sum[f[k,c]*t[i,c]*t[j,k,b,a],{k,c}]
+sum[t[i,c]*t[j,d]*v[a,b,c,d],{c,d}] +sum[t[i,j,c,d]*v[a,b,c,d],{c,d}] +sum[t[j,c]*v[a,b,i,c],{c}] -sum[t[k,b]*v[a,k,i,j],{k}]
+sum[t[i,c]*v[b,a,j,c],{c}] -sum[t[k,a]*v[b,k,j,i],{k}] -sum[t[k,d]*t[i,j,c,b]*v[k,a,c,d],{k,c,d}] -sum[t[i,c]*t[j,k,b,d]*v[k,a,c,d],
{k,c,d}] -sum[t[j,c]*t[k,b]*v[k,a,c,i],{k,c}] +2*sum[t[j,k,b,c]*v[k,a,c,i],{k,c}] -sum[t[j,k,c,b]*v[k,a,c,i],{k,c}]
-sum[t[i,c]*t[j,d]*t[k,b]*v[k,a,d,c],{k,c,d}] +2*sum[t[k,d]*t[i,j,c,b]*v[k,a,d,c],{k,c,d}] -sum[t[k,b]*t[i,j,c,d]*v[k,a,d,c],{k,c,d}]
-sum[t[j,d]*t[i,k,c,b]*v[k,a,d,c],{k,c,d}] +2*sum[t[i,c]*t[j,k,b,d]*v[k,a,d,c],{k,c,d}] -sum[t[i,c]*t[j,k,d,b]*v[k,a,d,c],{k,c,d}]
-sum[t[j,k,b,c]*v[k,a,i,c],{k,c}] -sum[t[i,c]*t[k,b]*v[k,a,j,c],{k,c}] -sum[t[i,k,c,b]*v[k,a,j,c],{k,c}]
-sum[t[i,c]*t[j,d]*t[k,a]*v[k,b,c,d],{k,c,d}] -sum[t[k,d]*t[i,j,a,c]*v[k,b,c,d],{k,c,d}] -sum[t[k,a]*t[i,j,c,d]*v[k,b,c,d],{k,c,d}]
+2*sum[t[j,d]*t[i,k,a,c]*v[k,b,c,d],{k,c,d}] -sum[t[j,d]*t[i,k,c,a]*v[k,b,c,d],{k,c,d}] -sum[t[i,c]*t[j,k,d,a]*v[k,b,c,d],{k,c,d}]
-sum[t[i,c]*t[k,a]*v[k,b,c,j],{k,c}] +2*sum[t[i,k,a,c]*v[k,b,c,j],{k,c}] -sum[t[i,k,c,a]*v[k,b,c,j],{k,c}]
+2*sum[t[k,d]*t[i,j,a,c]*v[k,b,d,c],{k,c,d}] -sum[t[j,d]*t[i,k,a,c]*v[k,b,d,c],{k,c,d}] -sum[t[j,c]*t[k,a]*v[k,b,i,c],{k,c}]
-sum[t[j,k,c,a]*v[k,b,i,c],{k,c}] -sum[t[i,k,a,c]*v[k,b,j,c],{k,c}] +sum[t[i,c]*t[j,d]*t[k,a]*t[l,b]*v[k,l,c,d],{k,l,c,d}]
-2*sum[t[k,b]*t[l,d]*t[i,j,a,c]*v[k,l,c,d],{k,l,c,d}] -2*sum[t[k,a]*t[l,d]*t[i,j,c,b]*v[k,l,c,d],{k,l,c,d}]
+sum[t[k,a]*t[l,b]*t[i,j,c,d]*v[k,l,c,d],{k,l,c,d}] -2*sum[t[j,c]*t[l,d]*t[i,k,a,b]*v[k,l,c,d],{k,l,c,d}]
-2*sum[t[j,d]*t[l,b]*t[i,k,a,c]*v[k,l,c,d],{k,l,c,d}] +sum[t[j,d]*t[l,b]*t[i,k,c,a]*v[k,l,c,d],{k,l,c,d}]
-2*sum[t[i,c]*t[l,d]*t[j,k,b,a]*v[k,l,c,d],{k,l,c,d}] +sum[t[i,c]*t[l,a]*t[j,k,b,d]*v[k,l,c,d],{k,l,c,d}]
+sum[t[i,c]*t[l,b]*t[j,k,d,a]*v[k,l,c,d],{k,l,c,d}] +sum[t[i,k,c,d]*t[j,l,b,a]*v[k,l,c,d],{k,l,c,d}]
+4*sum[t[i,k,a,c]*t[j,l,b,d]*v[k,l,c,d],{k,l,c,d}] -2*sum[t[i,k,c,a]*t[j,l,b,d]*v[k,l,c,d],{k,l,c,d}]
-2*sum[t[i,k,a,b]*t[j,l,c,d]*v[k,l,c,d],{k,l,c,d}] -2*sum[t[i,k,a,c]*t[j,l,d,b]*v[k,l,c,d],{k,l,c,d}] +sum[t[i,k,c,a]*t[j,l,d,b]*v[k,l,c,d],
{k,l,c,d}] +sum[t[i,c]*t[j,d]*t[k,l,a,b]*v[k,l,c,d],{k,l,c,d}] +sum[t[i,j,c,d]*t[k,l,a,b]*v[k,l,c,d],{k,l,c,d}]
-2*sum[t[i,j,c,b]*t[k,l,a,d]*v[k,l,c,d],{k,l,c,d}] -2*sum[t[i,j,a,c]*t[k,l,b,d]*v[k,l,c,d],{k,l,c,d}] +sum[t[j,c]*t[k,b]*t[l,a]*v[k,l,c,i],
{k,l,c}] +sum[t[l,c]*t[j,k,b,a]*v[k,l,c,i],{k,l,c}] -2*sum[t[l,a]*t[j,k,b,c]*v[k,l,c,i],{k,l,c}] +sum[t[l,a]*t[j,k,c,b]*v[k,l,c,i],{k,l,c}]
-2*sum[t[k,c]*t[j,l,b,a]*v[k,l,c,i],{k,l,c}] +sum[t[k,a]*t[j,l,b,c]*v[k,l,c,i],{k,l,c}] +sum[t[k,b]*t[j,l,c,a]*v[k,l,c,i],{k,l,c}]
+sum[t[j,c]*t[l,k,a,b]*v[k,l,c,i],{k,l,c}] +sum[t[i,c]*t[k,a]*t[l,b]*v[k,l,c,j],{k,l,c}] +sum[t[l,c]*t[i,k,a,b]*v[k,l,c,j],{k,l,c}]
-2*sum[t[l,b]*t[i,k,a,c]*v[k,l,c,j],{k,l,c}] +sum[t[l,b]*t[i,k,c,a]*v[k,l,c,j],{k,l,c}] +sum[t[i,c]*t[k,l,a,b]*v[k,l,c,j],{k,l,c}]
+sum[t[j,c]*t[l,d]*t[i,k,a,b]*v[k,l,d,c],{k,l,c,d}] +sum[t[j,d]*t[l,b]*t[i,k,a,c]*v[k,l,d,c],{k,l,c,d}]
+sum[t[j,d]*t[l,a]*t[i,k,c,b]*v[k,l,d,c],{k,l,c,d}] -2*sum[t[i,k,c,d]*t[j,l,b,a]*v[k,l,d,c],{k,l,c,d}]
-2*sum[t[i,k,a,c]*t[j,l,b,d]*v[k,l,d,c],{k,l,c,d}] +sum[t[i,k,c,a]*t[j,l,b,d]*v[k,l,d,c],{k,l,c,d}] +sum[t[i,k,a,b]*t[j,l,c,d]*v[k,l,d,c],
{k,l,c,d}] +sum[t[i,k,c,b]*t[j,l,d,a]*v[k,l,d,c],{k,l,c,d}] +sum[t[i,k,a,c]*t[j,l,d,b]*v[k,l,d,c],{k,l,c,d}] +sum[t[k,a]*t[l,b]*v[k,l,i,j],
{k,l}] +sum[t[k,l,a,b]*v[k,l,i,j],{k,l}] +sum[t[k,b]*t[l,d]*t[i,j,a,c]*v[l,k,c,d],{k,l,c,d}] +sum[t[k,a]*t[l,d]*t[i,j,c,b]*v[l,k,c,d],
{k,l,c,d}] +sum[t[i,c]*t[l,d]*t[j,k,b,a]*v[l,k,c,d],{k,l,c,d}] -2*sum[t[i,c]*t[l,a]*t[j,k,b,d]*v[l,k,c,d],{k,l,c,d}]
+sum[t[i,c]*t[l,a]*t[j,k,d,b]*v[l,k,c,d],{k,l,c,d}] +sum[t[i,j,c,b]*t[k,l,a,d]*v[l,k,c,d],{k,l,c,d}] +sum[t[i,j,a,c]*t[k,l,b,d]*v[l,k,c,d],
{k,l,c,d}] -2*sum[t[l,c]*t[i,k,a,b]*v[l,k,c,j],{k,l,c}] +sum[t[l,b]*t[i,k,a,c]*v[l,k,c,j],{k,l,c}] +sum[t[l,a]*t[i,k,c,b]*v[l,k,c,j],{k,l,c}]
+v[a,b,i,j]

h i j
a b
=〈a b

i j∣e−
T 1−

T 2 H e
T 1

T 2∣0〉

Robert J. Harrison, UT/ORNL 23Robert J. Harrison, UT/ORNL06/26/10 2306/26/10

The Tensor Contraction Engine:
A Tool for Quantum Chemistry

Oak Ridge National
Laboratory

David E. Bernholdt,
Venkatesh Choppella, Robert
Harrison

Pacific Northwest National
Laboratory

So Hirata

Louisiana State University
J Ramanujam

Ohio State University
Gerald Baumgartner, Alina
Bibireata, Daniel Cociorva,
Xiaoyang Gao, Sriram
Krishnamoorthy, Sandhya
Krishnan, Chi-Chung Lam,
Quingda Lu, Russell M.
Pitzer, P Sadayappan,
Alexander Sibiryakov

University of Waterloo
Marcel Nooijen, Alexander
Auer

Research at ORNL supported by the Laboratory Directed Research and Development Program. Research at PNNL supported by the Office of Basic Energy
Sciences, U. S. Dept. of Energy. Research at OSU, Waterloo, and LSU supported by the National Science Foundation Information Technology Research Program

http://www.cis.ohio-state.edu/~gb/TCE/

24

Pesky details of an incomplete spec.

● Some tensors have symmetries w.r.t. index
permutations

● Others have predictable block sparsity

● Huge impact on memory use and algorithm cost

● ... one year later ...

〈 p q∣r s 〉=〈 p s∣r q 〉=⋯

b2u×b3u=b1g

25

range V = 3000;
range O = 100;

index a,b,c,d,e,f : V;
index i,j,k,l : O;

mlimit = 100GB;

procedure P(in A[V,V,O,O], in B[V,V,V,O],
 in C[V,V,O,O], in D[V,V,V,O],
 out S[V,V,O,O])=
begin
 S[a,b,i,j] == sum[A[a,c,i,k] * B[b,e,f,l]
 * C[d,f,j,k] * D[c,d,e,l],
 {c,e,f,k,l}];
end

Tensor Contraction Engine (TCE)
• Sadayappan et al. Proc. IEEE, 93, 2005
• High-level domain-specific language for a class of problems

in chemistry/physics based on contraction of
large multi-dimensional tensors (NSF + DOE)

• Specialized optimizing compiler
– Produces F77+GA code, linked to runtime libs

Sabij=∑
cefkl

Aacik Bbefl Cdfjk Dcdel

26

TCE
Components

• Algebraic Transformations
– Minimize operation count

• Memory Minimization
– Reduce intermediate storage

via loop fusion (LCPC’03)

• Space-Time Transformation
– Trade-offs between storage

and recomputation (PLDI’02)

• Data Locality Optimization
– Optimize use of storage

hierarchy via tiling (ICS’01,
HiPC’03, IPDPS’04)

• Data Dist./Comm. Optimization
– Optimize parallel data layout

(IPDPS’03)
• Integrated System

● (SuperComputing’02,
Proc. IEEE 05)

Tensor Expressions

Algebraic
Transformations

Memory
Minimization

Performance
Model

System
Memory

Specification

Software
Developer

Data Distribution
and Partitioning

Parallel Code
Fortran/C/…

OpenMP/MPI/Global Arrays

Sequence of Matrix Products
Element-wise Matrix Operations

Element-wise Function Eval.

Space-Time
Trade-Offs

Storage and Data
Locality Management

No sol’n fits disk Sol’n fits disk, not mem.Sol’n fits mem.

Sol’n fits mem.

No sol’n fits disk

27

Productivity of TCE

199279901183CCSDTQ

198833932102CCSDT

19821321348CCSD

1978320911CCD

Year#F77Lines#TermsTheory

• The tensor contraction expressions for the higher members of the
Coupled Cluster family of models can be generated relatively easily,
but the effort to manually generate Fortran code is quite significant

• The code development time for other models of comparable
complexity can be reduced from years to days/weeks

• More than 25 methods implemented → » 5 years to hand code

Result of first hand
implementation of

CCSDTQ

28

NWChem CCSD(T) – 1.31 PFLOP/s
E. Aprà, R.J. Harrison, W.A. deJong, A.P. Rendell, V. Tipparaju and R.M. Olson

CCSD(T) benchmark of the binding energy of (H2O)24

(H2O)24

29

Python vs. Java
● The initial Python prototype

written by chemists works
but has lots of “issues” with
memory, speed, ...

● The OSU TCE generates
better code, respects
bounds on memory use,
but is written in Java by
C/S graduate students

● And none of the chemists
have a clue how it works and
none of them know Java

● Guess which is in use

30

31

Multiresolution Adaptive
Numerical Scientific Simulation

Ariana Beste1, George I. Fann1, Robert J. Harrison1,2,
Rebecca Hartman-Baker1, Judy Hill1, Jun Jia1,

1Oak Ridge National Laboratory
2University of Tennessee, Knoxville

in collaboration with

Gregory Beylkin4, Lucas Monzon4,
Martin Mohlenkamp5, and Hideo Sekino6

4University of Colorado
5Ohio University

6Toyohashi Technical University, Japan

harrisonrj@ornl.gov

32

Funding
• MADNESS started as a DOE SciDAC project and the majority of its

support still comes from the DOE
• DOE SciDAC, divisions of Advanced Scientific Computing Research

and Basic Energy Science, under contract DE-AC05-00OR22725
with Oak Ridge National Laboratory, in part using the National
Center for Computational Sciences.

• DARPA HPCS2: HPCS programming language evaluation
• NSF CHE 0625598: Cyber-infrastructure and Research Facilities:

Chemical Computations on Future High-end Computers
• NSF CNS-0509410: CAS-AES: An integrated framework for

compile-time/run-time support for multi-scale applications on high-
end systems

• NSF OCI-0904972: Computational chemistry and physics beyond
the petascale

33

What is MADNESS?

• A general purpose numerical environment for
reliable and fast scientific simulation
– Applications already in nuclear physics, chemistry,

atomic physics, material science, with investigations
beginning in climate and fusion.

• A general purpose parallel programming
environment designed for the petascale
– Standard C++ with concepts from Cilk, Charm++, HPCS

languages, with a multi-threaded runtime that
dynamically manages task dependences, scheduling and
provides global data view.

– Compatible by design with existing applications

34

Ariana Beste Hideo Sekino Robert Harrison

Gregory Beylkin

Eduard Valeyev

Judy Hill
George Fann

Paul Sutter
Matt Reuter

Alvaro Vasquez

Jun Jia
Tetsuya Kato
Justus Calvin
J. Pei

Scott Thornton

Rebecca
Hartman-Baker

Nicholas Vence
Takahiro Ii

35

Why MADNESS
• MADNESS

– Reduces S/W complexity since programmer not
responsible for managing dependencies,
scheduling, or placement

– Reduces S/W complexity through MATLAB-like
level of composition of scientific problems with
guaranteed speed and precision

– Reduces numerical complexity by enabling
solution of integral instead of differential
equations

– Framework makes latest techniques in applied
math and physics available to wide audience

36

The math behind the MADNESS

• Discontinuous spectral element basis
– High-order convergence ideally suited for modern

computer technology

• Multi-resolution analysis for fast algorithms
– Sparse representation of many integral operators
– Precision guaranteed through adaptive refinement

• Separated representations of operators and
functions
– Enable efficient computation in many dimensions

37

Essential techniques for fast
computation

• Multiresolution

• Low-separation
rank

• Low-operator
rank

V 0⊂V 1⊂⋯⊂V n

V n =V 0V 1−V 0 ⋯V n−V n−1

f  x1, ,xn =∑
l=1

M

σ l∏
i=1

d

f i
 l   x i +O  ε 

∥ f i
 l 
∥2=1 σ l0

A=∑
μ= 1

r

u μ σ μ v μ
T +O ε 

σ μ0 v μ
T v λ=u μ

T u λ=δ μν

39

Integral Formulation
●Solving the integral equation

● Eliminates the derivative operator and related “issues”
● Converges as fixed point iteration with no preconditioner

()
()

()

()

21
2

12

2

2 2

2 *

* () () in 3D ; 2
4

k r s

V E

E V

G V

e
G f r ds f s k E

r sπ

−

− −

− ∇ + Ψ = Ψ

Ψ = − −∇ − Ψ

= − Ψ

= = −
−∫

Such Green’s Functions (bound state Helmholtz, Poisson) can be rapidly
and accurately applied with a single, sparse matrix vector product.

40

Separated form for integral operators

• Approach
– Represent the kernel over a finite range as a sum of

products of 1-D operators (often, not always, Gaussian)

– Only need compute 1D transition matrices (X,Y,Z)
– SVD the 1-D operators (low rank away from singularity)
– Apply most efficient choice of low/full rank 1-D operator
– Even better algorithms not yet implemented

T∗ f=∫ dsK r−s  f s 

r ii',jj',kk'
n,l−l' =∑

μ= 0

M

X ii'

n,l x−l'
x Y jj'

n,l y−l'
y Z kk'

n,l z−l'
z +O ε 

41

Accurate Quadratures

●Trapezoidal quadrature
● Geometric precision for

periodic functions with
sufficient smoothness

●Beylkin & Monzon
● Further reductions, but

not yet automated The kernel for x=1e-4,1e-3,1e-2,1e-,1e0.

The curve for x=1e-4 is the rightmost

e− r

r
=

2

∫
0

∞

e− x2 t2
−

2
/4 t 2

dt

=
2

∫
−∞

∞

e− x2 e2s
−

2 e−2 s
/4 s ds

42

High-level composition
• Close to the physics

operatorT G = CoulombOperator(k, rlo, thresh);

functionT rho = psi*psi;

double twoe = inner(G(rho),rho);

double pe = 2.0*inner(Vnuc*psi,psi);

double ke = 0.0;

for (int axis=0; axis<3; axis++) {

 functionT dpsi = diff(psi,axis);

 ke += inner(dpsi,dpsi);

}

double energy = ke + pe + twoe;

E=〈∣−
1
2
∇

2
V∣〉〈∣〉

43

H atom
Energy

44

H atom actual source
Let
 Omega = [-20, 20]^3
 r = x -> sqrt(x_0^2 + x_1^2 + x_2^2)
 g = x -> exp(-r(x))
 v = x -> -r(x)^-1
In
 psi = F g
 nu = F v
 S = < psi | psi >
 V = < psi | nu * psi >
 T = 1/2 * sum_i=0^2 < del_i psi | del_i psi >
 print S, V, T, (T + V)/S
End

45

He atom
Hylleraas

2-term
6D

46

He atom
Hartree-

Fock

47

Hartree-Fock

● What I really wanted to type was

● But had to
● Provide E or rather dE/dφ
● Describe inexact-Newton algorithm with stopping criterion
● Transform to integral representation for efficiency and accuracy

● Can automate some steps, c.f. Maple, Mathematica
● But properties of computation in the underlying basis are crucial

for accuracy and efficiency
● So let’s go back and ask why is this working ...

min


E [] s.t. ∥∥2=1

48

Molecular HF and DFT
Energy and
gradients

ECPs coming
(Sekino)

Response
properties
(Vasquez and
Sekino)

Still not as
functional as
previous
python version

Spin density
of solvated
electron

49

Nuclear physics

Pei, Fann, Ou, Nazarewicz

● DOE UNDEF
● Nuclei & neutron matter
● ASLDA
● Hartree-Fock Bogliobulov
● Spinors
● Gamov states

Imaginary part of the seventh eigen function
two-well Wood-Saxon potential

50

Solid-state physics

• Thornton, Eguiluz and
Harrison (UT)
– NSF OCI-0904972:

Computational chemistry and
physics beyond the petascale

• Full band structure with
LDA and HF for periodic
systems

• In development: hybrid
functionals, response
theory, post-DFT methods
such as GW and model
many-body Hamiltonians
via Wannier functions

Coulomb potential isosurface in LiF

51

Runtime Objectives
● Scalability to 1+M processors ASAP
● Runtime responsible for

● scheduling and placement, managing data
dependencies, hiding latency, and medium to
coarse grain concurrency

● Compatible with existing models
● MPI, Global Arrays

● Borrow successful concepts from Cilk,
Charm++, Python

● Anticipating next gen. languages

52

Key elements

● Futures for hiding latency and
automating dependency management

● Global names and name spaces
● Non-process centric computing
● One-sided messaging between objects
● Retain place=process for MPI/GA legacy

● Dynamic load balancing
● Data redistribution, work stealing, randomization

53

Futures
● Result of an

asynchronous
computation
– Cilk, Java, HPCLs

● Hide latency due
to communication
or computation

● Management of
dependencies
– Via callbacks

int f(int arg);

ProcessId me, p;

Future<int> r0=task(p, f, 0);

Future<int> r1=task(me, f, r0);

// Work until need result

cout << r0 << r1 << endl;

Process “me” spawns a new task in process “p”
to execute f(0) with the result eventually returned
as the value of future r0. This is used as the argument
of a second task whose execution is deferred until
its argument is assigned. Tasks and futures can
register multiple local or remote callbacks to
express complex and dynamic dependencies.

54

Global Names

● Objects with global
names with different
state in each process
– C.f. shared[threads]

in UPC; co-Array

● Non-collective
constructor;
deferred destructor
– Eliminates synchronization

class A : public WorldObject<A>{

int f(int);

};

ProcessID p;

A a;

Future<int> b = a.task(p,&A::f,0);

A task is sent to the instance of a in process p.
If this has not yet been constructed the message
is stored in a pending queue. Destruction of a
global object is deferred until the next user
synchronization point.

55

Global Namespaces
● Specialize global names to

containers
– Hash table done
– Arrays, etc., planned

● Replace global pointer
(process+local pointer)
with more powerful
concept

●

● User definable map from
keys to “owner” process

class Index; // Hashable

class Value {

double f(int);

};

WorldContainer<Index,Value> c;

Index i,j; Value v;

c.insert(i,v);

Future<double> r =
c.task(j,&Value::f,666);

Namespaces are a large part of the elegance of Python and success of Charm++ (chares+arrays)

A container is created mapping indices
to values.

A value is inserted into the container.

A task is spawned in the process owning
key j to invoke c[j].f(666).

56

Electron correlation
●All defects in mean-field model are ascribed to electron
correlation
●Singularities in Hamiltonian imply for a two-electron atom

●Include the inter-electron distance in the wavefunction
● E.g., Hylleraas 1938 wavefunction for He

● Potentially very accurate, but not systematically improvable, and (until
recently) not computationally feasible for many-electron systems

● Configuration interaction expansion – slowly convergent

r1

r2

r12

 r1, r2, r1 2=1
1
2

r1 2⋯ as r1 20

 r1, r2, r1 2=exp −r1r21a r12⋯

 r1, r2,=∑
i

c i∣1
 i r12

i  r2∣

57
x

y

 |x-y|

 |x-y| x-y

 |x-y|

 y-x

 |x-y|

 |x-y|

 |x-y|

 |x-y|

 y-x

 x-y

 y-x

 x-y

In 3D, ideally must
be one box removed
from the diagonal

Diagonal box has
full rank

Boxes touching
diagonal (face, edge,
or corner) have
increasingly low rank

Away from diagonal
r = O(-log ε)

r = separation rank

∣x− y∣=∑
=1

r

f x g  y 
Partitioned SVD representation

58

Preliminary results
 for He atom
(Yanai, 2005)

Variational E E residual

HF -2.861 61

Iter. 0 -2.871 08 0.414 73

1 -2.894 92 -0.023 84 0.017 28

2 -2.900 43 -0.005 51 0.007 94

3 -2.902 18 -0.001 75 0.003 84

4 -2.902 88 -0.000 70 0.002 02

5 -2.903 20 -0.000 32 0.001 25

6 -2.903 39 -0.000 20 0.000 91

… … … …

12 -2.903 73 -0.000 04 0.000 36

13 -2.903 73 +0.000 004 0.000 32

14 -2.903 77 -0.000 04 0.000 28

Computational details:

- 5-th order multiwavelets
- Wavelet threshold: 2×10-5

- SVD threshold: 2×10-6

- Exponential correlation factor

exact -2.903 74 (E(HF)=-2.861 68)

Hylleraas (6 terms) -2.903 24

Löwdin and Redei -2.895 4

cc-pV6Z -2.903 48 (FCI) (E(HF)= -2.861 67)

Perturbative wavefunction:

 - Maximum refinement: n=4

- Memory: 132M in full partitioned
SVD form

~10GB without SVD
Energy is variational
(small non-variational is just

 truncation err)

59

Summary
● Huge computational resources are
 rushing towards us

● Tremendous scientific potential
● Tremendous challenges in

● Research,
● Education, and
● Community

● We need radical changes how we compose
 scientific S/W – and we need your help.
● UT and ORNL

● Think of us if you have some good students looking for
challenging graduate or
postdoctoral study

60

Time evolution
●Multiwavelet basis not optimal

● Not strongly band limited
● Explicit methods very unstable

(DG introduces flux limiters, we use filters)
● Semi-group approach

● Split into linear and non-linear parts

●Trotter-Suzuki methods
● Time-ordered exponentials
● Chin-Chen gradient correction (JCP 114, 7338, 2001)

u̇ x , t  = L uN u , t 

u x , t  = e
Lt u x , 0∫

0

t

e
L t− N u ,d 

eAB=e A/2 eB eA /2

O ∥[[A , B] , A]∥

61

Exponential propagator
●Imaginary time Schrodinger equation

● Propagator is just the heat kernel

● Wrap in solver to accelerate convergence

−1
2
∇

2
V x  x , t =̇ x , t 

 x , t ≃e∇
2 t /4e−V t e∇

2 t /4
 x ,0

e∇
2 t /2 f  x=

1
2 t

∫
−∞

∞

e
−
 x− y 2

2 t f  y dy

lim
t∞
x , t =0 x

62

Exponential propagator

●Free-particle propagator in real time

 x , t =ei ∇ 2 t /2x , 0=
1

 2 i t
∫
−∞

∞

e
−
 x− y2

2i t  y , 0dy

63

Exponential propagator

●Combine with projector onto band limit

G 0k , t , c=e
−i k 2 t

2 1k /c30 
−1

h=


c
tcrit=

2h2

pi

t=1 t=10

64

H2+
molecule in
laser field

(fixed
nuclei)

65

Dynamics of H
2

+ in laser
● 4D – 3 electronic + internuclear coordinate

● First simulation with quantum nuclei and
non-collinear field (field below is transverse)

E
le

ct
ro

ni
c

di
po

le
 a

.u
.

Time a.u.

R a.u.

-2.017

-2.032

Field

66

Nanoscale phtonics
(Matt Reuter, Northwestern)

Diffuse domain
approximation for
boundary value
problem

Maxwell equations

Micron-scale Au
tip 2nm above Si
surface.

67

Path to linear scaling HF & DFT

●Need speed and precision
● Absolute error cost
● Relative error cost

●Coulomb potential
●HF exchange potential
●Orbital update
●Orthogonalization, localization, diagonalization
●Linear response properties

O N ln N / 
O  N ln 1/ 

Systolic loop parallel algorithm for localization and diagonalization – Ii, Sekino, Harrison

68

Summary

• MADNESS is a general purpose framework
for scientific simulation
– Conceived for the next (not the last) decade
– Aims to makes scientific HPC more productive

by reducing various sources of complexity
– Deploys advanced numerical and C/S methods

• Multiple science applications at various
levels of completeness
http://code.google.com/p/m-a-d-n-e-s-s

